HNCJ冲击耐压发生器 华能三倍频发生器 试验说明
HNCJ系列雷电冲击电压发生装置
冲击电压发生器一种模仿雷电及操作过电压等冲击电压的电源装置。主要用于绝缘冲击耐压及介质冲击击穿、放电等试验中。
HNCJ-V 雷电冲击电压发生装置
产品参数
标准电压(kV) | 冲击电容量(μF) | 级电容量(μF) | 冲击能量(kJ) | 级电压(kV) | 级数 | 重量(kg) |
±300—±900 | 0.133—0.111 | 0.4—1 | 6—45 | ±100 | 3—9 | 547—1378 |
±1000—±1600 | 0.05—0.0937 | 0.5—1.5 | 25—120 | ±100 | 10—16 | 1366—1880 |
±1800—±2400 | 0.056—0.0833 | 0.5—1 | 90—240 | ±200 | 9—12 | 7353—11574 |
±2800—±3200 | 0.0357—0.0625 | 0.5—1.5 | 140—320 | ±200 | 14—16 | 10266—15680 |
±3600—±4800 | 0.0278—0.03125 | 0.5—2 | 80—240 | ±200 | 18—24 | 15480—23500 |
结构描述及介绍
1、 充电部分
(1)采用恒流充电方式,额定输出电压±100kV 额定输出直流电流10-300mA;
(2)采用干式充电变压器,初级电压220V,次级电压50kV,额定容量5千伏安。
(3)采用2DL-200kV/200mA的高压整流硅堆,反向耐压100kV,平均电流0.2A,高压整流硅堆安装在充电板上;
(4)高压整流硅堆的保护电阻采用漆包电阻丝制作;
(5) 恒流充电装置在15%~额定充电电压范围内,实际充电电压与整定电压偏差不大于±1%,充电电压的不稳定性不大于±1%,充电电压的可调精度为1%;
(6) 直流电阻分压器采用100kV,200MΩ,高压玻璃釉电阻.低压臂电阻装在分压器底部,低压臂上的电压信号用电缆引入测量系统内;
(7) 自动接地开关采用电磁铁分合接地机构,试验停止时可自动将主电容器短路放电并经保护电阻接地;
(8) 恒流充电装置、充电变压器、高压硅整流器、倍压电容、电阻分压器、充电限流电阻和主控制器等安装在同一个移动式底盘上;
2.本体部分
(1) 主体结构形式采用德国HIGHVOLT G型立柱结构;
(2) 本体采用倍压充电回路,每级额定电压100kV;
(3) 本体绝缘支柱5级结构.每级包括1台MWF-1.2/100绝缘外壳干式脉冲电容器、充电电阻、波头电阻、波尾电阻和点火球隙等,当产生雷电波时,根据试品电容量大小,选择适当的雷电波波头电阻、波尾电阻和级数;
(4) 级脉冲电容为1.2uF,直流工作电压100kV;
(5) 波头电阻、波尾电阻均采用板形结构,无感绕制。电阻采用HIGHVOLT的结构,
电阻的热容量能满足试验要求;剩余电感小;
(6) 接头均为弹簧压接式,方便调波时的插拔且接触可靠。
(7) 波头、波尾电阻支架可以由多支电阻同时并联使用;
(8) 级球隙采用双边异极性触发,第二.三四级球隙采用三间隙椭圆球隙点火,从而触发的可靠性;
(9)各级球隙距离由低速永磁电动机驱动作直线调整,装置噪音小,无惯性,准确、快速,控制显示对应球距的放电电压;
(10)球隙距离也可在控制部分自动跟踪或人为干预;
(11)本体可每二级或多级并联使用,并联连接杆采用统一接插件,方便换接;
(12) 本体支柱采用玻璃钢材料制造,采取和防电晕的措施;
(13) 各级均采取防晕措施,在充电过程中不会出现明显电晕;
HNCJ冲击耐压发生器 华能三倍频发生器 试验说明并不能获取汽车的所有通信数据。那么汽车电子行业真正的测试需求是什么,或者说我们通过什么去真正的“侵入”汽车内部?从车用总线说起在汽车的通信过程中,大家熟悉的应该是CAN总线。除了CAN总线外,还有以下几种。接下来,我们一一来看。CAN(ControllerAreaNetwork):CAN控制器局域网络,已经成为一种标准,其芯片类型达到上百种。具有高可靠性和良好的错误检测能力,所以在汽车和嵌入式领域应用广泛。